Synthesis and characterisation of palladium(II) complexes with 1,2-bis(N-methylbenzimidazolyl)benzene

Hunasekatte Giriyappa Bheemanna, Virupaiah Gayathri and Nadur Muddanna Nanje Gowda*

Department of Chemistry, Bangalore University, Central College Campus, Bangalore 560 001, India

Palladium(II) salts react with a bidentate N-heterocycle 1,2-bis(N-methylbenzimidazolyl)benzene (N-N) to yield complexes of the composition $PdX_2(N-N)$ (X = CI, Br or CIO₄). A cationic complex, $[Pd(cod)(cotl)]CIO_4$ (cod = 1,5cyclooctadiene, cotl = cyclooctenyl, $C_8H_{13}^{-1}$ undergoes substitution of cod with N-N to produce [Pd(cotl)(N-N)]ClO₄. Dihalobridged binuclear complexes [PdX(cotl)]₂ (X = Cl or Br) react with N-N to give complexes of the types $[Pd_2Cl_2(cotl)(N-N)]Cl$ and $[\{PdBr(cotl)\}_2(N-N)]$.

Keywords: palladium, organopalladium complexes, N-heterocycle, spectroscopy

N-heterocycles represent an important class of ligands in coordination chemistry.1

Transition metal complexes containing N-heterocycles are gaining significance because of their relevance to metalloproteins and catalytic activity.²⁻⁸ A variety of transition metal complexes containing multidentate N-heterocycles has been reported from these laboratories. 9-14 1,3-bis(benzimidazolyl) benzene forms cyclometallated complexes with palladium and rhodium. 12,15 Williams and coworkers 16 have reported a dinuclear double helical copper(I) complex containing 2,6-bis(N-methylbenzimidazolyl)pyridine. Some palladium and platinum complexes containing N-heterocycles have been tested for cytotoxicity and antitumour activity. 17,18 Herein, we describe the synthesis and characterisation of the N-heterocycle, 1,2-bis(N-methylbenzimidazolyl)benzene (I) and its reactions with palladium halides, palladium perchlorate and organopalladium complexes containing the cyclooctenyl group (II).

Experimental

1,2-bis(N-methylbenzimidazolyl)benzene (N-N) was prepared following the literature methods given for related N-heterocycles. 10,19-20 PdCl₂ was procured from Arora-Matthey Ltd. and 1,5-cyclooctadiene was obtained from Merck. PdBr2 and Pd(ClO4)2 were made by dissolving Pd(OH)₂ (obtained by treating PdCl₂ solution with Na₂CO₃) in 1:1 HBr and HClO₄ respectively. [Pd(cod)(cotl)]ClO₄ and $[PdX(cotl)]_2$ (X = Cl or Br) were prepared as described earlier.²¹ The solvents used were distilled prior to their use.

Microanalysis of the metal complexes were carried out at CDRI Lucknow, India. IR (in nujol) and far-IR (in polyethylene powder) spectra were recorded on Shimadzu IR-435, Nicolet FT-IR and Bruker IFS 113V spectrometers respectively. Solid-state electronic spectra were recorded on a Shimadzu UV-3101PC spectrophotometer. The molar conductivity measurements were determined using an Elico model CH-82T conductivity cell. The ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz FT NMR spectrometer with TMS as the internal reference. Mass spectra were recorded on a KRATOS MALDI-TOF mass spectrometer.

Synthesis

1,2-bis(N-methylbenzimidazolyl)benzene(N-N): N-methyl-o-phenylenediaminedihydrochloride (1 mmol) dissolved in hot polyphosphoric acid (30 cm³) was treated with phthalic acid (0.5 mmol). The mixture was stirred at 200°C on a sand bath for 4 h and was neutralised with 10% sodium carbonate solution. The resulting solid was recrystallised from methanol to yield a white crystalline solid (70%).

JOURNAL OF CHEMICAL RESEARCH 2006

Preparation of the complexes

 $[PdX_2(N-N)]$: PdX₂ (\dot{X} = Cl, Br or ClO₄) (1 mmol) in THF (5 cm³) was treated with the heterocycle, N-N (1 mmol) in THF (5 cm³). The mixture was refluxed at room temperature for 4 h during which time a brown solid separated. The solid was washed with THF and dried in vacuo. Yield: 70%.

[Pd(cotl)(N-N)]ClO₄: To a suspension of [Pd(cotl)(cod)]ClO₄ (1 mmol) in THF (20 cm³) was added the heterocycle, N-N (1 mmol) dissolved in THF (10 cm³). The resulting mixture was refluxed for 2 h during which time a yellow solid separated. The solid was washed with THF and dried in vacuo. Yield: 65%.

 $[Pd_2Cl_2(cotl)(N-N)]Cl$: $[PdCl(cotl)]_2$ (0.05 mmol) in THF (10 cm³) was treated with the heterocycle, N-N (0.05 mmol) in THF (10 cm³). The mixture was stirred at room temperature for 24 h during which time a yellow compound separated. The solid was washed with THF and dried in vacuo. Yield: 35%. [{PdBr(cotl)}₂(N-N)]: [PdBr(cotl)]₂ (1 mmol) in THF (10 cm³)

was treated with the heterocycle, N-N (1 mmol) in THF (10 cm³). The mixture was stirred at room temperature for 24 h during which time a yellow compound separated. The solid was washed with THF and dried in vacuo. Yield: 70%.

Results and discussion

The N-heterocycle, 1,2-bis(N-methylbenzimidazolyl)benzene (N-N), has been prepared by treating a mixture of N-methyl-ophenylenediaminedihydrochloride in polyphosphoric acid with phthalic acid in 1:1 mole ratio, followed by workup. The product is obtained as white crystalline solid. It is soluble in common organic solvents. Palladium(II) salts, PdX_2 (X = Cl, Br or ClO_4) in THF at refluxing temperature react with N–N to produce brown complexes of the composition $[PdX_2(N-N)]$. The complexes are insoluble in common organic solvents but are soluble in DMF, in which they behave as non-electrolytes (Table 1).

[Pd(cod)(cotl)]ClO₄ in THF reacted with N-N to yield [Pd(cotl) (N-N)]ClO₄. It is soluble in DMF and the solution shows uniunivalent electrolytic behaviour of the complex.

[PdCl(cotl)]2 in THF reacts with N-N to give [Pd2Cl2(cotl) (N-N)]CI, the bromo analogue in THF undergoes bromobridge cleavage with N-N to yield [{PdBr(cotl)}₂(N-N)]. Both chloro and bromo complexes are soluble in DMF, the solutions of which exhibit uni-univalent and non-electrolytic behaviour for the former and latter. Physical properties and analytical data of the complexes are listed in Table 1

The solid-state IR spectra of the complexes are comparable with those of the uncoordinated N-heterocycle apart from minor shifts in the positions of the bands. The spectra of the complexes displayed bands around 1550 and 1620 cm⁻¹ due to v(C=C) and v(C=N) respectively and another band around 1400 cm⁻¹ due to the N-CH₃ deformation vibration. The perchlorate complexes, in addition to the heterocycle peaks, showed additional peaks due to the perchlorate group. The [Pd(OClO₃)₂(N-N)] complex displayed split bands around 1070 and 630 cm⁻¹ (Table 1) and these are

^{*} Correspondent. E-mail: nmngbng@yahoo.co.in

kes
complex
Il data of the comp
data
1 Analytical and IR spectral da
<u>~</u>
and
ytical
Anal
Table 1

ingie i Vilai fiical alla ili spectial data ol tile complexes	שלפברומו ממנמ י	or the complexes								
Complex	Colour	M.P./D.P(°C)	M.P./D.P(°C) $\Lambda_m^b \Omega^{-1} cm^2 mol^{-1}$		Found (Found (calcd.%)		IR S	IR spectral data (cm ⁻¹)	n ⁻¹)
				S	ェ	Z	CI/Br	v(C=C)& v(C=N)	δ N-CH ₃	$V(CIO_4)$
N-Na	White	250	ı	78.1(78.1)	5.4(5.4)	16.1(16.6)	ı	1545, 1616	1403	ı
[PdCl, (N-N)]	Brown	>270	29	51.2(51.2)	3.4(3.9)	10.8(10.9)	14.1(13.7)	1548, 1610	1409	I
[PdBr ₂ (N-N)]	Brown	>270	17	43.8(43.7)	3.1(3.3)	9.2(9.3)	25.4 (25.7)	1548, 1610	1409	I
$[Pd(OCIO_3)_2(N-N)]$	Brown	>270	39	40.9(41.0)	2.9(3.1)	8.8(8.7)	ı	1548, 1626	1403	1093, 1062
1										628, 623
[Pd(cotl) (N-N)]CIO₄	Yellow	>250	78	55.2(55.15)	5.1(5.1)	8.6(8.6)	ı	1545, 1616	1398	1098, 628
[Pd ₂ Cl ₂ (cotl)(N-N)]Cl	Yellow	226	89	47.2(47.0)	4.1(4.3)	7.5(7.3)	13.6(13.8)	1548, 1621	1409	1
$[\{PdBr(cotl)\}_2(N-N)]$	Yellow	>250	က	48.5(49.1)	4.8(5.0)	7.5(6.0)	17.6(17.2)	1548, 1621	1409	I
aN-N = 1,2-bis(N-methylbenzimidazolyl)benzene	enzimidazolyl)Ł	enzene								
^b Molar conductance of 10-3 M solution in dmf around 25°C	3 M solution in	dmf around 25°t	(J							

characteristic of coordinated perchlorates. 13 The [Pd(cotl)(N-N)] ClO₄ complex exhibited bands at 1098 and 628 cm⁻¹ due to ionic perchlorate group.²²

The far-IR spectra of the parent complexes [PdX(cotl)]₂ displayed bands at 270 and 157 cm⁻¹ for $\nu(Pd-Cl-Pd)$ and $\nu(Pd-Br-Pd)$ respectively.²¹ The products, $[Pd_2Cl_2(cotl)(N-N)]Cl$ and [{PdBr(cotl)}₂(N-N)] displayed peaks corresponding to bridged palladium-chloride stretches at 274 cm⁻¹ and terminal palladium-bromide stretches at 179 cm⁻¹ indicated the former has not undergone chlorobridge cleavage and latter has undergone bromobridge cleavage. 13,2

A comparison of the ¹H NMR spectra of the heterocycle, N-N, $[Pd(cod)(cotl)]ClO_4$, $[PdX(cotl)]_2$ (X = Cl or Br) with those of their reaction products revealed the presence of coordinated N-N in the latter. Further both positive and negative coordination induced shifts (c.i.s. = $\delta_{complex} - \delta_{ligand}$) have been observed. The spectrum of [Pd(cotl)(N-N)]ClO₄ showed resonances due to cotl and the N-heterocycle implying the displacement of cod in the precursor complex by N-N and thus a weaker coordination of cod and a stronger coordination of the cotl unit in the starting material. The proton resonances of the cotl unit in the product are observed in the range δ 1.75–3.60. The N-CH₃ resonance of the coordinated heterocycle is observed at $ca \delta 3.88$. The resonances due to the benzimidazole unit and the benzene ring are in the observed range δ 7.14-8.72

The ¹H NMR spectra of [Pd₂Cl₂(cotl)(N-N)]Cl and [{PdBr(cotl)}₂(N-N)] complexes also exhibit resonances due to cotl and benzimidazole units. The resonances due to the benzene ring protons of the N-heterocycle display a downfield shift on complexation. The N-CH₃ resonance is observed around δ 3.9. The benzimidazole ring proton resonances observed in the spectra of the complexes exhibit both positive and negative c.i.s. The resonances due to the a, b, h protons (see II) of the cotl unit in the N-N containing complexes show upfield shifts as compared to those of the precursor complexes. The proton resonances of cotl corresponding to c,g,d,e and f have positive c.i.s. According to Orellana *et al.*,²⁴ the c.i.s. arise due to electron donation from the ligand to the metal via the σ -bond, metal electron π -back donation to the ligand, van der Waals interaction and magnetic anisotropy of ring currents. The ¹H NMR spectral data of the N-heterocycle and the complexes are listed in Table 2

The ¹³C NMR spectra of [PdX₂(N-N)] complexes exhibit signals in the chemical shift range 110 to 150 ppm for the coordinated N-heterocycle, except for the N-CH₃ carbon whose signal is around 32 ppm. Negative c.i.s. for the carbon resonances may arise due to greater metal-to-ligand π-back donation, and positive c.i.s due to ligand-to-metal σ-donation.²⁵ The carbons of the coordinated N-heterocycle in [Pd(cotl)(N-N)]ClO₄ and [Pd₂Cl₂(cotl)(N-N)]Cl complexes, resonate in the range 110-151 ppm. The resonances corresponding to the coordinated cotl are located in the range 21–115 ppm. The resonance due to the N–CH₃ carbon is observed at $ca \delta 31$. The cotl signals have both positive and negative c.i.s. on complexation. The resonances corresponding to C-4' to C-9' of the benzimidazole unit (see I) and C-1 to C-6 of benzene unit show downfield shifts, except for C-4,5 of the chloro complex.

The ¹³C NMR spectrum of the [{PdBr(cotl)}₂(N-N)] complex display peaks due to cotl unit and the N-heterocycle. The carbona resonance of cotl in the complex has a negative shift whereas those due to other cotl and heterocycle carbons have both positive and negative c.i.s. The N-CH₃ resonance is observed at ca δ 33. The ¹³C NMR spectral data of the N-heterocycle and metal complexes are compiled in Table 3.

The electronic spectra of the N-heterocycle, and palladium(II) complexes in nujol mull have been recorded and the spetra exhibit an intense band at ca 33300 cm⁻¹. The band is assigned to metal-toligand charge transfer transition.26

The FAB-mass spectrum of $[Pd_2Cl_2(cotl)L]Cl$ (L = N-N) support its binuclear nature. The molecular ion peak corresponding to the dimer (m/z, 767) is absent. However peaks due to association product $Pd_2Cl_3(cotl)(L-3H)$ (m/z, 764), and fragmentation products $Pd_2Cl_2(cotl)(L-CH_3)$ (m/z, 716), $Pd_2(cotl)L$ (m/z, 660), $Pd_2Cl(L-CH_3)$ (m/z, 572), $PdCl_2L$ (m/z, 516), PdClL (m/z, 480) are observed. In addition, a peak is observed at 711 and this is probably due to the association of fragments to produce Pd₃Cl₂(L-CH₃) + 2H. The mass spectrum of $[{PdBr(cotl)}_2L]$ complex (L = N-N)also support its binuclear nature. The spectrum displays a weak molecular ion peak at m/z 847 and this corresponds to Pd₂Br(cotl) (L-3H). Additional peaks are observed at m/z 894, 725, 524 and 445

Table 2 ¹H NMR spectral data of the N-heterocycle and complexes in DMSO-d₆ (δ in p.p.m)^a

Complex ^b		Benzimidazole ring	izole ring			Benzene ring			Cotl unit	unit	
	H-4'	H-5'	H-6'	H-7'	N-CH ₃	H-3,6	H-4,5	Н-а	H-b,h	Н-с, д	H-d,e,f
[Pd(cod)(cotl)]CIO ₄	ı	1	1	1	1	ı	ı	5.60	5.17	1.85	1.48
[PdCl(cotl)] ₂	I	I	I	I	ı	ı	I	5.65	4.97	2.35	1.43
								i	3.75	1.92	!
[PdBr(cotl)] ₂	I	l	I	I	I	I	I	5.64	5.09 3.37	2.37	1.45
Z-Z	7.50d	7.20t	7.14t	7.47d	3.48 s	7.80 m	7.80 m	1	1	1	ı
[PdCl ₂ (N-N)]	8.28	7.42	7.42	7.70	3.78	8.24	8.07	1	ı	1	ı
ı	(0.78)	(0.22)	(0.28)	(0.23)	(0.30)	(0.44)	(0.27)				
[PdBr ₂ (N-N)]	8.27	7.40	7.40	7.70	3.77	8.25	8.05	1	ı	ı	ı
ı	(0.77)	(0.20)	(0.26)	(0.23)	(0.29)	(0.45)	(0.25)				
$[Pd(OCIO_3)_2(N-N)]$	7.80	7.37	7.30	7.15	3.88	8.70	8.40	1	ı	ı	ı
1	(0.30)	(0.17)	(0.16)	(-0.32)	(0.40)	(0.90)	(0.60)				
[Pd(cotl)(N-N)]CIO ₄	7.80	7.38	7.28	7.15	3.88	8.72	8.42	3.60	3.48	2.20	1.75
	(0.30)	(0.18)	(0.14)	(-0.32)	(0.40)	(0.92)	(0.62)	(-2.0)	(-1.69)	(0.35)	(0.32)
$[Pd_2Cl_2(cotl)(N-N)]Cl$	8.25	8.06	7.78	7.70	3.89	8.72	8.40	3.84	3.35	2.50	1.81
	(0.75)	(0.86)	(0.64)	(0.23)	(0.41)	(0.92)	(0.60)	(-1.81)	(-1.62)	(0.15)	(0.38)
$[\{PdBr(cotl)\}_2(N-N)]$	8.25	8.20	7.75	7.43	3.88	8.71	8.41	3.79	3.31	2.50	1.94
	(0.75)	(1.00)	(0.61)	(-0.04)	(0.40)	(0.91)	(0.61)	(-1.85)	(-1.78)	(0.13)	(0.49)
3 (; c + ; d c L c c ; t c c ; L c c c c c c c c c c c c c c c c	acitorilo acco	office boombai	0.0	o							

aValues in parentheses are coordination induced shifts, c.i.s. = $\delta_{complex} - \delta_{ligand}$. bs = singlet, d = doublet, t = triplet, m = multiplet

Table 3 $\,\,^{13}\text{C}$ NMR spectral data of N-heterocycle and complexes in DMSO-d₆ (δ in p.p.m)

Benzimidazole ring Benzene ring			Benzene ring	Benzene ring	Benzene ring	Benzene ring	e ring					Cotl unit		
C-2' C-4' C-5' C-6' C-7' C-8' C-9' N-CH ₃ C-1,2	C-6' C-7' C-8' C-9' N-CH ₃	C-8' C-9' N-CH ₃	C-9' N-CH ₃	N-CH ₃		C-1,	~	0-3,6	C-4,5	C-a	C-b,h	C-c,g	C-d,f	ς C
1 1 1	1	1	1	1	1	1		ı	ı	113.40	86.00	31.70	26.30	23.80
ı	ı	ı	ı	ı	1	'		ı	ı	116.92	88.36	35.74	30.69	27.87
1	1	1	1	ı			1	ı	ı	116.92	88.36	35.74	30.69	27.87
121.65 110.30 135.60 142.38 30.63	121.65 110.30 135.60 142.38 30.63	135.60 142.38 30.63	142.38 30.63	30.63		ï	30.75	131.33	129.82	ı	ı	ı	I	I
119.37 124.41 123.69 111.78 134.68 138.58 32.64	123.69 111.78 134.68 138.58 32.64	134.68 138.58 32.64	138.58 32.64	32.64		_	27.10	132.34	131.47	ı	I	ı	I	1
(0.41) (2.21) (2.04) (1.48) (-0.92) (-3.80)	(2.04) (1.48) (-0.92) (-3.80)	(-0.92) (-3.80)	(-3.80)	_	(2.01)		(-3.65)	(1.01)	(1.65)					
125.72 112.25 133.39 138.85	125.72 112.25 133.39 138.85	133.39 138.85	138.85		31.73		124.83	132.58	132.03	ı	ı	ı	I	I
(-3.43) (3.52) (4.07) (1.95) (-2.21) (-3.53)	(4.07) (1.95) (-2.21) (-3.53)	(-2.21) (-3.53)	(-3.53)	_	(1.10)		(-5.92)	(1.25)	(2.21)					
116.28 124.94 129.94 112.03 133.92 138.60	129.94 112.03 133.92 138.60	133.92 138.60	138.60		31.61		126.28	131.91	131.91	ı	I	ı	I	ı
(-2.68) (2.74) (3.29) (1.73) (-1.68) (-3.78)	(3.29) (1.73) (-1.68) (-3.78)	(-1.68) (-3.78)	(-3.78)	_	(0.98)		(-4.47)	(0.58)	(2.09)					
119.00 122.30 121.72 110.38 135.64 142.41	121.72 110.38 135.64 142.41	135.64 142.41	142.41		30.70		130.77	131.41	129.90	112.26	81.26	31.92	21.36	21.30
(0.04) (0.10) (0.07) (0.38) (0.04) (0.03)	(0.07) (0.38) (0.04) (0.03)	(0.04) (0.03)	(0.03)	_	(0.07)		(0.02)	(0.08)	(0.08)	(-1.14)	(-4.74)	(0.22)	(3.06)	(-2.50)
119.00 121.20 121.70 110.30 135.64 142.40	121.70 110.30 135.64 142.40	135.64 142.40	142.40		31.32		130.65	131.40	129.80	114.90	85.6	33.4	88.03	25.62
(0.04) (0.00) (0.05) (0.00) (0.04) (0.02)	(0.05) (0.00) (0.04) (0.02)	(0.04) (0.02)	(0.02)	_	(0.89)		(0.10)	(0.01)	(-0.02)	(-1.49)	(-2.76)	(-2.34)	(-2.66)	(-2.22)
125.06 124.94 112.93 134.62 137.40	124.94 112.93 134.62 137.40	134.62 137.40	137.40		33.25		126.81	133.00	132.90	114.30	99.06	38.65	32.90	29.38
(-3.70) (2.86) (3.29) (2.62) (-0.98) (-4.98)	(3.29) (2.62) (-0.98) (-4.98)	(-0.98) (-4.98)	(-4.98)		(2.62)		(-3.94)	(1.67)	(3.08)	(-2.62)	(2.30)	(2.91)	(2.21)	(1.54)

Values in parentheses are coordination induced shifts, c.i.s. = $\delta_{complex} - \delta_{ligand}$

and these may be due to fragmentation products like Pd(cotl)(L₂-2H), Pd₂Br₂(L-CH₃) + H, PdBrL and PdL respectively. 13,26,2

The analytical data, molar conductance, IR and ¹H and ¹³C NMR spectral results indicate that the heterocycle, halide and cotl groups are coordinated to the palladium ion. Molecular models suggest that the N-heterocycle can act as chelating or bridging bidentate in the complexes. In the case of the PdX₂(N-N) complexes, the tertiary nitrogen of each benzimidazole unit and the halides are coordinated to palladium. The N-heterocycle being a chelating or bridging bidentate four-electron donor serves as a good nucleophile to displace cod in [Pd(cot)(cod)]ClO₄. Based on the above results, PdX₂(N-N) and [Pd(cot)(N-N)]+ complexes are suggested to have four (III) and pseudo-three co-ordinate (IV) geometries respectively.

 $[Pd(cotl)X]_2$ (X = Cl or Br) reacts with N-N to form complexes of the types [Pd₂Cl₂(cotl)(N-N)]Cl and [{PdBr(cotl)}₂(N-N)]. During the course of the reaction, N-N displaces one of the cotl units in the dichloro-bridged complex, it cleaves the bromo bridge of the dimer [Pd(cotl)Br]₂ and subsequently the heterocycle forms the bridge in the product. Thus N-N acts as chelating bidentate in one chloro-complex and bridging bidentate in another bromo-complex. The ¹H and ¹³C NMR spectra of the complexes indicate the coordination of the N-heterocycle via the tertiary nitrogens of the benzimidazole moiety. Based on the above results, the complexes [Pd₂Cl₂(cotl)(N-N)] and $[{PdBr(cotl)}_2(N-N)]$ are proposed to have four (V) and pseudo coordinate(VI) geometry respectively around each metal ion. 13,16,26

The authors thank CDRI, Lucknow for CHN analysis and FAB-mass spectra, and the NMR Research Centre, IISc., Bangalore for NMR spectra and the UGC for a DRS program under SAP.

Received 23 September 2005; accepted 1 February 2006 Paper 05/3503

References

- 1 P.J. Steel, Coord, Chem Rev., 1990, 106, 227.
- E. Bouwman, W.L. Driessed and J. Reedijk, Coord. Chem. Rev, 1990, 104, 143
- S. Ruttimann, C. Piguet, G. Bernardinelli, B. Bocquet and A.F. Williams, J. Am. Chem. Soc., 1992, 144, 4230.
- J.D. Miller and F.D. Oliver, J. Chem. Soc., Dalton Trans., 1972, 2473.
- D. Mahajan, C. Creutz and N. Sutin, Inorg. Chem., 1985, 24, 2063.
- E.G. Leelamani, V. Gayathri and G.K.N. Reddy, Indian. J. Chem., 1986, 25A, 719.
- C.K. Ghosh and W.A.G. Graham, J. Am. Chem. Soc., 1987, 109, 4726.
- C.K. Ghosh and W.A.G. Graham, *J. Am. Chem. Soc.*, 1989, 111, 375. N. Shashikala, V. Gayathri, N.M.N. Gowda and G.K.N. Reddy, *J. Indian* Chem, Soc., 1989, 66,537.
 V. Gayathri, N. Shashikala, N.M.N. Gowda and G.K.N. Reddy, Indian.
- J. Chem., 1993, 32A, 33.
- V. Gayathri, E.G. Leelamani, N.M.N. Gowda and G.K.N. Reddy, Polyhedron, 1997, 16,7.
- V. Gayathri, E.G. Leelamani, N.M.N. Gowda and G.K.N. Reddy, Polyhedron, 1999, 18, 2351.
- Shivakumaraiah, J. D'Souza, Y.C. Reddy, V. Gayathri and N.M.N. Gowda Transition Met. Chem., 2004, 29, 113.
- Shivakumaraiah and N.M. Nanje Gowda, Synth. React. Inorg. Metal-Org. Chem., 2003, 33, 1220,
- S. Ruttimann, G. Bernardinelli and A.F. Williams, Angew. Chem. Int. ed. Engl., 1993, 32, 392.
- C. Piguet, G. Bernardinelli and A.F. Williams, Inorg. Chem., 1989, 28,
- Mylonas, A. Valvanidis, K. Dimitropoulos, M. A.S. Tsiftsoglou and I.S. Vizirianaxis J. Inorg. Biochem., 1988, 34, 265.
- R. Mital, T.S. Srivastava, H.K. Parech and M.P. Chitnis, J. Inorg Biochem., 1991, 41, 93.
- A.W. Addison and P.J. Burke, J. Heterocycl. Chem., 1981, 18, 803.
- A.W. Addison, S. Burman, C.G. Wahlgren, O.A. Rajan, T.H. Rowe and E. Sinn, J. Chem. Soc. Dalton Trans., 1987, 2621
- K.R. Nagasundara, N.M. Nanje Gowda and G.K.N. Reddy Ind. J. Chem., 2.1 1980. 19A, 1194.
- N.M.N. Gowda, S.B. Naikar and G.K.N. Reddy, Adv. Inorg. Chem. Radiochem., 28, 255 (1984).
- J.R. Ferraro (ed.), Low Frequency Vibrations in Inorganic and Coordination Compounds, Plenum Press, New York, 1977
- G. Orellana, C.A. İbarra and J. Santoro, Inorg. Chem., 1988, 27, 1025
- X. Xiaoming, Masa-aki-Haga, T.M. Inoue, YuRu, A.W. Addison and K.Kano, J. Chem. Soc. Dalton Trans., 1993, 2477
- R. Bhattacharjee, V. Gayathri and N.M.N. Gowda, Transition Met. Chem., 2004, 29, 328.
- R.M. Silversten, G.C. Bassler and T.C. Morril, Spectrometric Identification of Organic Compounds, 4th edn, Wiley 1981.